Combinatorial Networks Week 3, Wednesday

Ramsey's Theorem

- **Theorem.** If R(s, t-1) and R(s-1, t) are both even, then $R(s, t) \leq R(s, t-1) + R(s-1, t) 1$.
- **Proof.** Let n = R(s, t-1) + R(s-1, t) 1. Consider K_n with arbitrary 2-edge coloring. For any vertex v, define $B_v = \{y : vy \text{ is blue}\}$ and $R_v = \{y : vy \text{ is red}\}$. If there is some vertex v satisfying $|B_v| \geq R(s-1,t)$ or $|R_v| \geq R(s,t-1)$, then the conclusion follows immediately.

Contrarily, if every vertex v satisfies $|B_v| < R(s-1,t)$ and $|R_v| < R(s,t-1)$, then

$$n-1 = |B_v| + |R_v| \le R(s-1,t) + R(s,t-1) - 2.$$

Since n-1 = R(s,t-1) + R(s-1,t) - 2, it forces $|B_v| = R(s-1,t) - 1$ and $|R_v| = R(s,t-1) - 1$. Now note that n and $|B_v|$ are both odd and consider the subgraph induced by all the blue edges in K_n . It has odd vertices. Moreover, any vertex is of odd degree, but it's impossible!

Schur's Theorem

- **Definition.** For integer $k \geq 2$ and integers $s_1, s_2, ..., s_k \geq 2$, the Ramsey number $R_k(s_1, ..., s_k)$ is the least integer N such that any k-edge coloring of K_N has a clique K_{s_i} in color i.
- Exercise. $R_k(s_1,...,s_k) < \infty$.
- Schur's Theorem. For $k \geq 2$, there exists N = N(k), such that for any k-edge coloring $c: [N] \rightarrow [k]$, we can find $x, y, z \in [N]$ satisfying c(x) = c(y) = c(z) and x + y = z.
- **Proof.** Let $N = R_k(3,...,3)$. Given $c : [N] \to [k]$, define a k-edge coloring f on K_N by: f(ij) = c(|i-j|), for all distinct $i, j \in [N]$. Now by the definition of Ramsey number $R_k(3,...,3)$, there is a monochromatic ijk. We may assume i < j < k, then c(j-i) = c(k-i) = c(k-j). Write x = j-i, z = k-i, y = k-j, then x + y = z and c(x) = c(y) = c(z).
- Remark. Schur used this to prove that the Fermat Last Theorem holds in \mathbb{Z}_p for sufficiently large prime p. That is the following theorem.
- **Theorem.** For all integer $m \ge 1$, there is a prime number p(m), such that for any prime $p \ge p(m)$, $x^p + y^p = z^p \pmod{p}$ has nontrivial solution.
- **Proof.** For prime p, consider the multiplicative group \mathbb{Z}_p^* . There is a $g \in \mathbb{Z}_p^*$ such that for any $x \in \mathbb{Z}_p^*$, one can write $x = g^{im+j}$ for some nonnegative integers i, j with $0 \le j \le m-1$. We define a m-coloring as follows:

$$c: \mathbb{Z}_p^* \to [m] \ , \ x \mapsto j \in [m]$$

.

By Schur's Theorem, as long as p is large enough, there exist $x, y, z \in \mathbb{Z}_p^*$ such that c(x) = c(y) = c(z) and x + y = z.

On the one hand, From c(x) = c(y) = c(z) we can write $x = g^{i_1 m + j}, y = g^{i_2 m + j}, z = g^{i_3 m + j}$. On the other hand, x + y = z implies $g^{i_1 m} + g^{i_2 m} = g^{i_3 m}$. At last, denote $\tilde{x} = g^{i_1}, \tilde{y} = g^{i_2}, \tilde{z} = g^{i_3}$. Then $\tilde{x}, \tilde{y}, \tilde{z}$ is a nontrivial solution for the equation in \mathbb{Z}_p .

Diagonal Ramsey number

- **Theorem.** Let integers n, s satisfying $\binom{n}{s} 2^{1-\binom{s}{2}} < 1$, then R(s, s) > n.
- **Proof.** We look for a 2-edge coloring of K_n such that it has no monochromatic K_s . Consider a random 2-edge coloring of K_n , each edge is colored by blue or red both with probability $\frac{1}{2}$, independent of other edges. For any subset X of size s in [n], let A_X be the event that X is a monochromatic K_s , then $Pr(A_X) = 2(\frac{1}{2})^{\binom{s}{2}} = 2^{1-\binom{s}{2}}$, from which one can get

$$\sum_{|X|=s} \Pr(A_X) = \binom{n}{s} 2^{1 - \binom{s}{2}} > \Pr(\bigcup_{|X|=s} A_X)$$

Thus $Pr(\text{there is no monochromatic } K_s) > 0$. That is, there is a 2-edge coloring of K_n with no monochromatic K_s . So R(s,s) > n.

• Corollary.

$$R(s,s) \ge s2^{(s-1)/2}/e$$

.

• Proof. Let

$$n = (s/e)2^{(s-1)/2}(e/2)^{1/s} \ge s2^{(s-1)/2}/e.$$

Recall that

$$\binom{n}{s} < n^s/s!$$

and

$$e(s/e)^s \le s!$$

Then

$$\binom{n}{s} < (ne/s)^s/e$$

Thus

$$\binom{n}{s} 2^{1-\binom{s}{2}} < (ne/s)^s 2^{1-\binom{s}{2}}/e = (e/s)^s (s/e)^s 2^{\binom{s}{2}} (e/2) 2^{1-\binom{s}{2}}/e = 1$$

By the theorem proved just before, we get

$$R(s,s) > n \ge s2^{(s-1)/2}/e$$
.