Combinatorial Networks
Week 3, Wednesday

Ramsey’s Theorem

Theorem. If R(s,t — 1) and R(s — 1,t) are both even, then R(s,t) < R(s,t — 1)+ R(s —
1,) — 1.

Proof. Let n = R(s,t — 1) + R(s — 1,t) — 1. Consider K,, with arbitrary 2-edge coloring.
For any vertex v, define B, = {y : vy is blue} and R, = {y : vy is red}. If there is some
vertex v satisfying |B,| > R(s — 1,t) or |R,| > R(s,t — 1), then the conclusion follows
immediately.

Contrarily, if every vertex v satisfies |B,| < R(s — 1,t) and |R,| < R(s,t — 1), then

n—1=|By|+|Ry| < R(s—1,t) + R(s,t — 1) — 2.

Since n—1 = R(s,t—1)+R(s—1,t)—2, it forces |B,| = R(s—1,t)—1 and |R,| = R(s,t—1)—1.
Now note that n and |B,| are both odd and consider the subgraph induced by all the blue
edges in K. It has odd vertices. Moreover, any vertex is of odd degree, but it’s impossible!
|

Schur’s Theorem

Definition. For integer k > 2 and integers s, s, ..., Sp > 2, the Ramsey number Ry (s1, ..., sk)
is the least integer N such that any k-edge coloring of Ky has a clique K, in color 7.

Exercise. Ry(s1,...,sk) < 00.

Schur’s Theorem. For k > 2, there exists N = N(k), such that for any k-edge coloring
¢ : [N] — [k], we can find z,y, z € [N] satisfying ¢(z) = ¢(y) = ¢(z) and = + y = z.

Proof. Let N = Ri(3,...,3). Given c: [N] — [k], define a k-edge coloring f on Ky by:
f(ij) = c(|i — 4]), for all distinct i,j € [N].

Now by the definition of Ramsey number Ry(3,...,3), there is a monochromatic ijk. We
may assume i < j < k, then ¢(j—i) = ¢(k—i) = c(k—j). Writex = j—i,z = k—i,y = k—7,
then x +y = z and ¢(x) = ¢(y) = ¢(2). ]

Remark. Schur used this to prove that the Fermat Last Theorem holds in Z,, for sufficiently
large prime p. That is the following theorem.

Theorem. For all integer m > 1, there is a prime number p(m), such that for any prime
p > p(m), 2P + yP = 2P (mod p) has nontrivial solution.

Proof. For prime p, consider the multiplicative group Z,.

There is a g € Z;, such that for any = € Z;, one can write r = g"™*7 for some nonnegative
integers i, j with 0 < j7 <m — 1.

We define a m-coloring as follows:

c:Zy—[m], z—j€[m]



By Schur’s Theorem, as long as p is large enough, there exist x,y, z € Z;, such that c(x) =
c(y) =c(z) and x + y = 2.

On the one hand, From c(z) = c(y) = ¢(z) we can write x = ¢git™m*J y = g2m+i » = glam+J,
On the other hand, = + y = z implies g"t™ + ¢2™ = ¢®™. At last, denote & = ¢*',§ =
g%2,% = ¢. Then %, 7, Z is a nontrivial solution for the equation in L.

Diagonal Ramsey number

e Theorem. Let integers n, s satisfying (%) 21-(3) < 1, then R(s,s) > n.

e Proof. We look for a 2-edge coloring of K, such that it has no monochromatic K.
Consider a random 2-edge coloring of K,,, each edge is colored by blue or red both with
probability %, independent of other edges. For any subset X of size s in [n], let Ax be the

event that X is a monochromatic K, then Pr(Ax) = 2(%)(;) = 21*(3), from which one can

get
S Pr(dy) = (Z)T—(i) > Pr( | Ax)

|X|=s |X|=s

Thus Pr(there is no monochromatic K,) > 0. That is, there is a 2-edge coloring of K, with
no monochromatic K. So R(s,s) > n. |

e Corollary.
R(s,s) > 267 1/2 /¢

e Proof. Let
n=(s/€)26D/2(e/2)1/ > s26=1/2 .

<Z> <n®/sl

Recall that

and
e(s/e)® < sl
Then
(Z) < (ne/s)* /e
Thus

S

<”>2l<§) < (ne/s)*2 () Je = (e/5)%(s/e)*2() (¢/2)21= () fe = 1
By the theorem proved just before, we get

R(s,s) >n > s20=0/2 /¢,



