
Combinatorial Networks
Week 3, Wednesday

Ramsey’s Theorem

• Theorem. If R(s, t− 1) and R(s− 1, t) are both even, then R(s, t) ≤ R(s, t− 1) + R(s−
1, t)− 1.

• Proof. Let n = R(s, t− 1) + R(s− 1, t)− 1. Consider Kn with arbitrary 2-edge coloring.
For any vertex v, define Bv = {y : vy is blue} and Rv = {y : vy is red}. If there is some
vertex v satisfying |Bv| ≥ R(s − 1, t) or |Rv| ≥ R(s, t − 1), then the conclusion follows
immediately.
Contrarily, if every vertex v satisfies |Bv| < R(s− 1, t) and |Rv| < R(s, t− 1), then

n− 1 = |Bv|+ |Rv| ≤ R(s− 1, t) + R(s, t− 1)− 2.

Since n−1 = R(s, t−1)+R(s−1, t)−2, it forces |Bv| = R(s−1, t)−1 and |Rv| = R(s, t−1)−1.
Now note that n and |Bv| are both odd and consider the subgraph induced by all the blue
edges in Kn. It has odd vertices. Moreover, any vertex is of odd degree, but it’s impossible!

Schur’s Theorem

• Definition. For integer k ≥ 2 and integers s1, s2, ..., sk ≥ 2, the Ramsey numberRk(s1, ..., sk)
is the least integer N such that any k-edge coloring of KN has a clique Ksi in color i.

• Exercise. Rk(s1, ..., sk) <∞.

• Schur’s Theorem. For k ≥ 2, there exists N = N(k), such that for any k-edge coloring
c : [N ]→ [k], we can find x, y, z ∈ [N ] satisfying c(x) = c(y) = c(z) and x + y = z.

• Proof. Let N = Rk(3, ..., 3). Given c : [N ]→ [k], define a k-edge coloring f on KN by:
f(ij) = c(|i− j|), for all distinct i, j ∈ [N ].
Now by the definition of Ramsey number Rk(3, ..., 3), there is a monochromatic ijk. We
may assume i < j < k, then c(j−i) = c(k−i) = c(k−j). Write x = j−i, z = k−i, y = k−j,
then x + y = z and c(x) = c(y) = c(z).

• Remark. Schur used this to prove that the Fermat Last Theorem holds in Zp for sufficiently
large prime p. That is the following theorem.

• Theorem. For all integer m ≥ 1, there is a prime number p(m), such that for any prime
p ≥ p(m), xp + yp = zp (mod p) has nontrivial solution.

• Proof. For prime p, consider the multiplicative group Z∗p.
There is a g ∈ Z∗p such that for any x ∈ Z∗p, one can write x = gim+j for some nonnegative
integers i, j with 0 ≤ j ≤ m− 1.
We define a m-coloring as follows:

c : Z∗p → [m] , x 7→ j ∈ [m]
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By Schur’s Theorem, as long as p is large enough, there exist x, y, z ∈ Z∗p such that c(x) =
c(y) = c(z) and x + y = z.
On the one hand, From c(x) = c(y) = c(z) we can write x = gi1m+j , y = gi2m+j , z = gi3m+j .
On the other hand, x + y = z implies gi1m + gi2m = gi3m. At last, denote x̃ = gi1 , ỹ =
gi2 , z̃ = gi3 . Then x̃, ỹ, z̃ is a nontrivial solution for the equation in Zp.

Diagonal Ramsey number

• Theorem. Let integers n, s satisfying
(
n
s

)
21−(s2) < 1, then R(s, s) > n.

• Proof. We look for a 2-edge coloring of Kn such that it has no monochromatic Ks.
Consider a random 2-edge coloring of Kn, each edge is colored by blue or red both with
probability 1

2 , independent of other edges. For any subset X of size s in [n], let AX be the

event that X is a monochromatic Ks, then Pr(AX) = 2(12)(
s
2) = 21−(s2), from which one can

get ∑
|X|=s

Pr(AX) =

(
n

s

)
21−(s2) > Pr(

⋃
|X|=s

AX)

Thus Pr(there is no monochromatic Ks) > 0. That is, there is a 2-edge coloring of Kn with
no monochromatic Ks. So R(s, s) > n.

• Corollary.
R(s, s) ≥ s2(s−1)/2/e

.

• Proof. Let
n = (s/e)2(s−1)/2(e/2)1/s ≥ s2(s−1)/2/e.

Recall that (
n

s

)
< ns/s!

and
e(s/e)s ≤ s!

Then (
n

s

)
< (ne/s)s/e

Thus (
n

s

)
21−(s2) < (ne/s)s21−(s2)/e = (e/s)s(s/e)s2(s2)(e/2)21−(s2)/e = 1

By the theorem proved just before, we get

R(s, s) > n ≥ s2(s−1)/2/e.
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